
Analyzing Running Time
(Chapter 2)

What is efficiency?

Tools: asymptotic growth of functions

Practice finding asymptotic running time of
algorithms

First: a bit of sorting

Which of these grows faster?
n4/3

n(log n)3

Example(s) on board

Bean Counting 101:
Analyze Gale-Shapley

Initialize each college and student to be free.
while (some college is free and hasn't made
offers to every student) {

Choose such a college c
s = 1st student on c’s list to whom c has not
 made offer
if (s is free)

assign c and s to be engaged
else if (s prefers c to current college c’)

assign c and s to be engaged, and c’ to be
free

else
s rejects c

}

Bean Counting

Count how many lines of code execute

Be wary of pseudocode: make sure each line
is really O(1)

May need to think carefully about data
structures to determine if this is the case

Four Patterns

For Loops

Accounting

Enumeration

Divide-and-(maybe)-conquer

Pattern 1: For Loops

max = a1

for i = 2 to n {
if (ai > max)

max = ai
}

for i = 2 to n {
for j = 2 to n {

// constant time
// operations

}

Compute the maximum

O(n) O(n2)

Pattern 2: Accounting

For while() loops or more complex
constructions, may not be obvious how many
times a line of code executes

Use accounting scheme to count executions

Accounting:
Gale-Shapley

Initialize each college and student to be free
while (some college is free and ...) {

//
// etc., etc.
//

}

Each loop execution makes a new offer. Charge
each loop to an offer!

 --> at most n2 times through loop

Accounting:
Merge Sorted Lists

Input: sorted lists A = a1,a2,…,an and B =
b1,b2,…,bn
Output: combined sorted list

Accounting:
Merge Two Sorted Lists

i = 1, j = 1
while (both lists are nonempty) {
 if (ai ≤ bj) {

append ai to output list
increment i

}
 else {

append bj to output list
increment j

}

}
append remainder of nonempty list
to output list

Accounting
scheme?

Pattern 3: Enumeration

Brute force solution: examine all possibilities

Running time will depend on the structure of
the problem. How many possible answers are
there?

(Seems ugly, but sometimes the best we can
do!)

Closest Points
Closest pair of points in a plane
Given a list of n points in the plane (x1, y1),
…, (xn, yn), find the pair that is closest.

min = infinity
for i = 1 to n {
 for j = i+1 to n {
 d = (xi - xj)2 + (yi - yj)2
 if (d < min)
 min = d

 }
}

O(n2)

More Enumeration

Examine all ____ of n items

Pairs - O(n2)

Triples - O(n3)

Subsets of size k - O(nk)

Subsets of any size - O(2n)

Permutations - O(n!)

Pattern 4:
Divide-and-(maybe)-conquer

O(log n) “logarithmic time”. Do a constant
amount of work to discard a constant fraction
of the input (often 1/2)

Binary search (illustrate on board)

O(n log n). Divide-and-conquer (much more
later in course)

Mergesort

Mergesort

13 17 6 3 9 2 16 1

13 17 6 3 9 2 16 1
13 17 6 3 9 2 16 1

Divide

13 17 3 6 2 9 1 16 Sort

3 6 13 17 1 2 9 16

1 2 3 6 9 13 16 17
Conquer

Summary

Bean counting: count each line, be careful of
pseudocode

Patterns: for loops, accounting, enumeration,
divide-and-maybe-conquer

Common running times

O(log n), O(n), O(n log n), O(n2), O(2n), O(n!)

