Analyzing Running Time
(Chapter 2)

@ What is efficiency?
@ Tools: asymptotic growth of functions

@ Practice finding asymptotic running time of
algorithms



First: a bit of sorting

@ Which of these grows faster?
n4/3

n(log n)

® Example(s) on board



Bean Counting 101:
Analyze Gale-Shapley

Initialize each college and student to be free.
while (some college is free and hasn't made
offers to every student) ({
Choose such a college c
s = 1%t student on c¢’s list to whom c has not
made offer
if (s is free)
assign c and s to be engaged
else if (s prefers ¢ to current college c’)
assign ¢ and s to be engaged, and c¢’ to be
free
else
s rejects c



Bean Counting

@ Count how many lines of code execute

@ Be wary of pseudocode: make sure each line
is really O(1)

@ May need to think carefully about data
structures to determine if this is the case



Four Patterns

@ For Loops
@ Accounting
@ Enumeration

@ Divide-and-(maybe)-conquer



Pattern 1: For Loops

Compute the maximum

s fori=2ton{
fori=2ton { for j=2ton{

if (ai> max) // constant time
} max = di : // operations

O(n) O(n?)



Pattern 2: Accounting

@ For while() loops or more complex
constructions, may not be obvious how many
times a line of code executes

@ Use accounting scheme to count executions



Accounting:
Gale-Shapley

Initialize each college and student to be free

while (some college is free and ...) {
//
// etc., etc.
//

Each loop execution makes a new offer. Charge
each loop to an offer!

--> at most n® times through loop



Accounting:
Merge Sorted Lists

@ Input: sorted listsA = ai;,az,..,a, and B
bi1,bs,..,bn

@ Output: combined sorted list

e

Merged result




Accounting:
Merge Two Sorted Lists

i=1 3 =7
while (both lists are nonempty) ({
if (a: < by) {
append a; to output list

increment i Accounting

} scheme?

else {
append b; to output list
increment j

}
}

append remainder of nonempty list
to output 1list



Pattern 3: Enumeration

@ Brute force solution: examine all possibilities

@ Running time will depend on the structure of

the problem. How many possible answers are
there?

@ (Seems ugly, but sometimes the best we can
do!)



Closest Points

@ Closest pair of points in a plane
Given a list of n points in the plane (x1, y1),
... (Xn, Yn), find the pair that is closest.

min = infinity
fori=1+ton ¢
for j =i+l to n § o(n?)
d = (xi - xj)2 + (yi - yy)°
if (d < min)
min = d

}



More Enumeration

Examine all of n items

@ Pairs - O(n®)

@ Triples - O(n?)

@ Subsets of size k - O(n¥)

@ Subsets of any size - O(2")

® Permutations - O(n!)



Pattern 4:
Divide-and-(maybe)-conquer

@ O(log n) “logarithmic time”. Do a constant
amount of work to discard a constant fraction
of the input (often 1/2 )

@ Binary search (illustrate on board)

@ O(n log n). Divide-and-conquer (much more
later in course)

@ Mergesort



Mergesort

Divide

 Sort

Conquer



Summary

@ Bean counting: count each line, be careful of
pseudocode

@ Patterns: for loops, accounting, enumeration,
divide-and-maybe-conquer

@ Common running fimes

@ O(log n), O(n), O(n log n), O(n?), O(2"), O(nl)



